Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Ecotoxicol Environ Saf ; 273: 116145, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460199

RESUMO

The presence of methicillin-resistant or -susceptible S. aureus in pig nostrils has been known for a long time, but the occurrence of extended-spectrum beta-lactamase (ESBL)-producing E. coli has hardly been investigated. Here, we collected 25 E. coli recovered from nasal samples of 40 pigs/10 farmers of four farms. Nine ESBL-producing isolates belonging to ST48, ST117, ST847, ST5440, ST14914 and ST10 were retrieved from seven pigs. All blaESBL genes (blaCTX-M-32,blaCTX-M-14,blaCTX-M-1,blaCTX-M-65, and blaSHV-12) were horizontally transferable by conjugation through plasmids belonging to IncI1 (n=3), IncX1 (n=3) and IncHI2 (n=1) types. IncI1-plasmids displayed different genetic environments: i) IS26-blaSHV-12-deoR-IS26, ii) wbuC-blaCTX-M-32-ISKpn26 (IS5), and iii) IS930-blaCTX-M-14-IS26. The IncHI2-plasmid contained the genetic environment IS903-blaCTX-M-65-fipA with multiple resistance genes associated either to: a) Tn21-like transposon harbouring genes conferring aminoglycosides/beta-lactams/chloramphenicol/macrolides resistance located on two atypical class 1 integrons with an embedded ΔTn5393; or b) Tn1721-derived transposon displaying an atypical class 1 integron harbouring aadA2-arr3-cmlA5-blaOXA-10-aadA24-dfrA14, preceding the genetic platform IS26-blaTEM-95-tet(A)-lysR-floR-virD2-ISVsa3-IS3075-IS26-qnrS1, as well as the tellurite resistance module. Other plasmids harbouring clinically relevant genes were detected, such as a ColE-type plasmid carrying the mcr-4.5 gene. Chromosomally encoded genes (fosA7) or integrons (intI1-dfrA1-aadA1-qacE-sul1/intI1-IS15-dfrA1-aadA2) were also identified. Finally, an IncY plasmid harbouring a class 2 integron (intI2-dfrA1-sat2-aadA1-qacL-IS406-sul3) was detected but not associated with a blaESBL gene. Our results evidence that pig nostrils might favour the spread of ESBL-E. coli and mcr-mediated colistin-resistance. Therefore, enhanced monitoring should be considered, especially in a sector where close contact between animals in intensive farming increases the risk of spreading antimicrobial resistance.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Suínos , Escherichia coli/genética , Fazendas , Staphylococcus aureus/genética , beta-Lactamases/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Infecções por Escherichia coli/veterinária
2.
Sci Total Environ ; 926: 171562, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38460700

RESUMO

The One Health approach of antimicrobial resistance highlighted the role of the aquatic environment as a reservoir and dissemination source of resistance genes and resistant bacteria, especially due to anthropogenic activities. Resistance to extended-spectrum cephalosporins (ESC) conferred by extended-spectrum beta-lactamases (ESBLs) in E. coli has been proposed as the major marker of the AMR burden in cross-sectoral approaches. In this study, we investigated wastewater, surface water and seawater that are subjected to official water quality monitoring in Monastir, Tunisia. While all but one sample were declared compliant according to the official tests, ESC-resistant bacteria were detected in 31 (19.1 %) samples. Thirty-nine isolates, coming from urban, industrial and surface water in Monastir, were collected and characterized using antibiograms and whole-genome sequencing. These isolates were identified as 27 Escherichia coli (69.3 %) belonging to 13 STs, 10 Klebsiella pneumoniae (25.6 %) belonging to six STs, and two Citrobacter freundii (5.1 %). We observed the persistence and dissemination of clones over time and in different sampling sites, and no typically human-associated pathogens could be identified apart from one ST131. All isolates presented a blaCTX-M gene - blaCTX-M-15 (n = 22) and blaCTX-M-55 (n = 8) being the most frequent variants - which were identified on plasmids (n = 20) or on the chromosome (n = 19). In conclusion, we observed ESC resistance in rather ubiquitous bacteria that are capable of surviving in the water environment. This suggests that including the total coliform count and the ESBL count as determined by bacterial growth on selective plates in the official monitoring would greatly improve water quality control in Tunisia.


Assuntos
Antibacterianos , Escherichia coli , Humanos , Antibacterianos/farmacologia , beta-Lactamases/genética , Tunísia , Cefalosporinas , Testes de Sensibilidade Microbiana
3.
J Glob Antimicrob Resist ; 36: 70-75, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145799

RESUMO

OBJECTIVES: Wild birds are vectors of antimicrobial resistance. Birds living in close contact with humans or other animals, like feral pigeons (Columba livia), might be especially prone to acquire resistance genes such as those encoding extended-spectrum beta-lactamases (ESBLs) and carbapenemases. METHODS: Cloacal samples (n = 206) of free-living feral pigeons (C. livia) were collected in Sousse and Monastir, Tunisia. Antimicrobial susceptibility profiles were determined by disc-diffusion, and resistant isolates were short- and long-read whole-genome sequenced. Sequence analysis was performed using tools of the Centre for Genomic Epidemiology, and Phylogenetic analysis was performed based on the core-genome MLST. RESULTS: Fourteen (14/206, 6.8%) pigeons harboured Enterobacterales resistant to last-generations cephalosporins, of which 10 were CTX-M-15- or CTX-M-27-producers, while two (1.0%) carried a VIM-2-producing Pseudomonas putida. Positive pigeons lived on four different livestock farms. Three STs (ST206, ST5584, ST8149) were identified among E. coli, of which ST5584 and ST8149 were found in two different farms. Genetic diversity was also observed in Enterobacter cloacae and P. putida isolates. The blaCTX-M-27 genes were chromosomally encoded, while the blaCTX-M-15 genes were carried on highly similar IncF/F-:A-:B53 plasmids. The blaVIM-2 gene was located on a class 1 integron co-harbouring several resistance genes. CONCLUSION: Pigeons living on livestock farms carried clinically important resistance genes encoding ESBLs and carbapenemases. Our results evidenced that both clonal (ST8149 and ST5584) and plasmidic (IncF/F-:A-:B53) transfers played a role in the spread of resistance genes among pigeons. Further studies are needed to identify factors favouring the transfer and persistence of resistance genes within the pigeon communities.


Assuntos
Anti-Infecciosos , Pseudomonas putida , Animais , Humanos , Columbidae/genética , Escherichia coli , Pseudomonas putida/genética , Tipagem de Sequências Multilocus , Tunísia/epidemiologia , Filogenia , beta-Lactamases/genética
4.
Microbiol Spectr ; : e0222023, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37772831

RESUMO

European starlings are widespread migratory birds that have already been described as carrying bacteria resistant to extended-spectrum cephalosporins (ESC-R). These birds are well known in Tunisia because they spend the wintertime in this country and are hunted for human consumption. The goal of our study was to estimate the proportion of ESC-R in these birds and to characterize the collected isolates using whole-genome sequencing. Results showed that 21.5% (42/200) of the birds carried either an extended-spectrum beta-lactamase (ESBL) or an acquired AmpC gene. Diverse bla CTX-M genes were responsible for the ESBL phenotype, bla CTX-M-14 being the most prevalent, while only bla CMY-2 and one bla CMY-62 were found in AmpC-positive isolates. Likewise, different genetic determinants carried these resistance genes, including IncHI2, and IncF plasmids for bla CTX-M genes and IncI1 plasmids for bla CMY-2 genes. Three chromosomally encoded bla CTX-M-15 genes were also identified. Surprisingly, species identification revealed a large proportion (32.7%) of Escherichia marmotae isolates. This species is phenotypically indistinguishable from Escherichia coli and has obviously the same capacity to acquire ESC-R genes. Our data also strongly suggest that at least the IncHI2/pST3 plasmid can spread equally between E. coli and E. marmotae. Given the potential transmission routes between humans and animals, either by direct contact with dejections or through meat preparation, it is important to closely monitor antimicrobial resistance in European starlings in Tunisia and to set up further studies to identify the sources of contamination of these birds. IMPORTANCE The One Health concept highlighted knowledge gaps in the understanding of the transmission routes of resistant bacteria. A major interest was shown in wild migratory birds since they might spread resistant bacteria over long distances. Our study brings further evidence that wild birds, even though they are not directly submitted to antibiotic treatments, can be heavily contaminated by resistant bacteria. Our results identified numerous combinations of resistance genes, genetic supports, and bacterial clones that can spread vertically or horizontally and maintain a high level of resistance in the bird population. Some of these determinants are widespread in humans or animals (IncHI2/pST3 plasmids and pandemic clones), while some others are less frequent (atypical IncI1 plasmid and minor clones). Consequently, it is essential to be aware of the risks of transmission and to take all necessary measures to prevent the proportions of resistant isolates from increasing uncontrollably.

5.
J Glob Antimicrob Resist ; 34: 186-194, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482121

RESUMO

OBJECTIVES: This study aimed to characterize Escherichia coli isolates from cloacal samples of white stork nestlings, with a special focus on extended-spectrum ß-lactamases (ESBLs)-producing E. coli isolates and their plasmid content. METHODS: Cloacal samples of 88 animals were seeded on MacConkey-agar and chromogenic-ESBL plates to recover E. coli and ESBL-producing E. coli. Antimicrobial susceptibility was screened using the disc diffusion method, and the genotypic characterization was performed by polymerase chain reaction (PCR) and subsequent sequencing. S1 nuclease Pulsed-Field-Gel-Electrophoresis (PFGE), Southern blotting, and conjugation essays were performed on ESBL-producing E. coli, as well as whole-genome sequencing by short- and long-reads. The four blaESBL-carrying plasmids were completely sequenced. RESULTS: A total of 113 non-ESBL-producing E. coli isolates were collected on antibiotic-free MacConkey-agar, of which 27 (23.9%) showed a multidrug-resistance (MDR) phenotype, mainly associated with ß-lactam-phenicol-sulfonamide resistance (blaTEM/cmlA/floR/sul1/sul2/sul3). Moreover, four white stork nestlings carried ESBL-producing E. coli (4.5%) with the following characteristics: blaSHV-12/ST38-D, blaSHV-12/ST58-B1, blaCTX-M-1/ST162-B1, and blaCTX-M-32/ST155-B1. Whole-genome sequencing followed by Southern blot hybridizations on S1-PFGE gels in ESBL-positive isolates proved that the blaCTX-M-1 gene and one of the blaSHV-12 genes were carried by IncI1/pST3 plasmids, while the second blaSHV-12 gene and the blaCTX-M-32 gene were located on IncF plasmids. The two blaSHV-12 genes and the two blaCTX-M genes had similar but non-identical close genetic environments, as all four genes were flanked by a variety of insertion sequences. CONCLUSION: The role played by several genetic platforms in the mobility of ESBL genes allows for interchangeability on a remarkably small scale (gene-plasmid-clones), which may support the spread of ESBL genes.


Assuntos
Aves , Infecções por Escherichia coli , Escherichia coli , Animais , Ágar , beta-Lactamases/genética , Aves/microbiologia , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Plasmídeos/genética , Espanha
6.
Int J Food Microbiol ; 380: 109885, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36057242

RESUMO

Resistant Enterobacterales of avian intestinal origin can contaminate carcasses during broiler processing and thereby spread through the human food chain. This study aimed at assessing the prevalence, diversity and genomic characteristics of ESBL/AmpC Enterobacterales in poultry flocks from different farms and cities in the state of Paraná, Brazil. Enterobacterales isolated from cloacal samples were subjected to antimicrobial susceptibility testing (AST). ESBL/AmpC isolates were whole-genome sequenced and subjected to S1-nuclease pulsed-field gel electrophoresis (S1-PFGE) followed by Southern blotting to determine the location of resistant genes on plasmids. A surprisingly high proportion of E. coli (40.6 %) collected on non-selective plates presented an ESBL/AmpC phenotype. Multidrug resistance was statistically not higher in ESBL/AmpC E. coli having the potential to be Avian Pathogenic (APEC-like) compared to non-APEC-like ESBL/AmpC E. coli isolates. Resistance to antibiotics not authorized for use in poultry in the State of Paraná was observed, suggesting that antimicrobial resistance (AMR) is co-selected by the use of veterinary-licensed antibiotics. Phylogenetic analyzes revealed the presence of identical or highly similar ESBL/AmpC E. coli clones on farms distant up to 100 km of each other; this strongly suggests that the centralization and verticalization of the poultry industry can facilitate the spread of resistant bacteria among different farms, companies, and cities. The molecular characterization of clones and plasmids proved the dominance of the ST224 E. coli lineage and the IncF/blaCTX-M-55 plasmid, possibly indicating the emergence of successful clones and plasmids adapted to the chicken host. Our data contribute to the epidemiological tracking of resistance mechanisms in Enterobacterales from poultry and to knowledge for further One Health studies to control the spread of resistant bacteria from food animals to humans.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Brasil , Cefalosporinas , Galinhas/microbiologia , Escherichia coli/genética , Infecções por Escherichia coli/microbiologia , Humanos , Filogenia , Plasmídeos/genética , Aves Domésticas/microbiologia , beta-Lactamases/genética
8.
J Antimicrob Chemother ; 77(10): 2754-2762, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-35983589

RESUMO

BACKGROUND: Compared with healthcare settings, the role of veterinary hospitals in the spread of extended-spectrum cephalosporin- and carbapenem-resistant (ESC-R/CP-R) bacteria has been overlooked. OBJECTIVES: To investigate using genome-based approaches the dynamics of ESC-R and CP-R Enterobacterales among 125 dogs admitted to the same veterinary hospital over a 4 month period. METHODS: Dogs (n = 125) were sampled within 48 h of admission and at discharge. ESC-R/CP-R were phenotypically characterized and whole-genome sequenced using short- and long-read technologies. Phylogenetic analyses were performed using appropriate pipelines. RESULTS: ESC-R/CP-R prevalence in dogs was 4.8% (6/125) upon admission and reached 24.8% (31/125) at discharge, reflecting multiple acquisitions of ESBL/AmpC and OXA-48-positive Enterobacterales during hospitalization. Indistinguishable or closely related isolates were found within dogs, shared between dogs, and shared between dogs and their environment, suggesting numerous clonal and plasmid spreads. Even though carbapenems are not licensed for use in companion animals, a wide distribution of the blaOXA-48/IncL plasmid was evidenced across different bacterial species and dogs. CONCLUSIONS: This study highlights nosocomial acquisitions of ESBL/AmpC and carbapenemase-producing Enterobacterales by companion animals and the risk of further transmission within the community in a One Health perspective. Reinforced infection prevention and control measures and screening procedures are urgently needed in small animal veterinary settings where advanced therapeutics and intensive care is provided.


Assuntos
Cães , Farmacorresistência Bacteriana , Enterobacteriaceae , beta-Lactamases , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Carbapenêmicos , Cefalosporinas , Células Clonais , Cães/microbiologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Filogenia , Plasmídeos , beta-Lactamases/genética
9.
Front Microbiol ; 13: 1023403, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687643

RESUMO

Introduction: Colistin-resistance widely disseminated in food-producing animals due to decades of colistin use to treat diarrhea. The plasmid-borne mcr-1 gene has been extensively reported from bovine, swine and chicken worldwide, but smaller productions such as the goat farming sector were much less surveyed. Methods: We looked for colistin-resistant isolates presenting plasmid-borne genes of the mcr family in both breeding (n=80) and fattening farms (n=5). Localization of the mcr-1 gene was performed using Southern blot analysis coupled to short-read and long-read sequencing. Results: Only the mcr-1 gene was identified in 10% (8/80) of the breeding farms and four over the five fattening farms. In total, 4.2% (65/1561) of the animals tested in breeding farms and 60.0% (84/140) of those tested in fattening farms presented a mcr-1-positive E. coli. The mcr-1 gene was located either on the chromosome (32.2%) or on IncX4 (38.9%) and IncHI2 (26.8%) plasmids. As expected, both clonal expansion and plasmidic transfers were observed in farms where the mcr-1 gene was carried by plasmids. Tn6330 transposition was observed in the chromosome of diverse E. coli sequence types within the same farm. Discussion: Our results show that the mcr-1 gene is circulating in goat production and is located either on plasmids or on the chromosome. Evidence of Tn6330 transposition highlighted the fact that chromosomal insertion does not impair the transmission capability of the mcr-1 gene. Only strict hygiene and biosecurity procedures in breeding farms, as well as a prudent use of antibiotics in fattening farms, can avoid such complex contamination pathways.

10.
Appl Environ Microbiol ; 87(24): e0135821, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34613750

RESUMO

Intestinal carriage of extended spectrum ß-lactamase (ESBL)-producing Escherichia coli is a frequent, increasing, and worrying phenomenon, but little is known about the molecular scenario and the evolutionary forces at play. We screened 45 veal calves, known to have high prevalence of carriage, for ESBL-producing E. coli on 514 rectal swabs (one randomly selected colony per sample) collected over 6 months. We characterized the bacterial clones and plasmids carrying blaESBL genes with a combination of genotyping methods, whole genome sequencing, and conjugation assays. One hundred and seventy-three ESBL-producing E. coli isolates [blaCTX-M-1 (64.7%), blaCTX-M-14 (33.5%), or blaCTX-M-15 (1.8%)] were detected, belonging to 32 bacterial clones, mostly of phylogroup A. Calves were colonized successively by different clones with a trend in decreasing carriage. The persistence of a clone in a farm was significantly associated with the number of calves colonized. Despite a high diversity of E. coli clones and blaCTX-M-carrying plasmids, few blaCTX-M gene/plasmid/chromosomal background combinations dominated, due to (i) efficient colonization of bacterial clones and/or (ii) successful plasmid spread in various bacterial clones. The scenario "clone versus plasmid spread" depended on the farm. Thus, epistatic interactions between resistance genes, plasmids, and bacterial clones contribute to optimize fitness in specific environments. IMPORTANCE The gut microbiota is the epicenter of the emergence of resistance. Considerable amount of knowledge on the molecular mechanisms of resistance has been accumulated, but the ecological and evolutionary forces at play in nature are less studied. In this context, we performed a field work on temporal intestinal carriage of extended spectrum ß-lactamase (ESBL)-producing Escherichia coli in veal farms. Veal calves are animals with one of the highest levels of ESBL producing E. coli fecal carriage, due to early high antibiotic exposure. We were able to show that calves were colonized successively by different ESBL-producing E. coli clones, and that two main scenarios were at play in the spread of blaCTX-M genes among calves: efficient colonization of several calves by a few bacterial clones and successful plasmid spread in various bacterial clones. Such knowledge should help develop new strategies to fight the emergence of antibiotic-resistance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana/genética , Escherichia coli , Plasmídeos , Carne Vermelha , Animais , Antibacterianos/farmacologia , Bovinos/microbiologia , Células Clonais , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Plasmídeos/genética , Carne Vermelha/microbiologia , beta-Lactamases/genética
12.
J Glob Antimicrob Resist ; 20: 87-93, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31306816

RESUMO

OBJECTIVES: The aim of this study was to elucidate the molecular features of genes, plasmids and clones of OXA-48-like producingKlebsiella pneumoniae isolates recovered in Sahloul Hospital (Sousse, Tunisia) in the period 2012-2014. METHODS: In vitro antimicrobial susceptibility testing, S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting and PCR-based replicon typing (PBRT) were performed. Extended-spectrum ß-lactamase (ESBL) and carbapenemases genes were detected by PCR and sequencing. The clonality of isolates was assessed by PFGE and multilocus sequence typing (MLST). RESULTS: Klebsiella pneumoniae accounted for 26.8% (1095/4083) of clinical Enterobacterales isolates identified during 2012-2014, of which 21.9% (240/1095) were resistant to carbapenems, mostly harbouring blaOXA-48-like genes (196/240; 81.7%). Plasmid analysis showed that blaOXA-204 and blaOXA-48 were mostly carried by IncA/C and IncL plasmids, respectively. The current data highlight the dominance of two ST101 and ST147 lineages spreading OXA-48 and OXA-204, respectively, through successive clonal spreads at this hospital. In addition, a large diversity of other K. pneumoniae lineages was also identified, such as ST15, ST36 and ST525 spreading OXA-48 as well as ST340, ST2032, ST301, ST199 and ST1561 spreading OXA-48 or OXA-204, constituting a reservoir of possible dominant clones in the future. CONCLUSION: This study reports the full molecular characterisation of carbapenem resistance in K. pneumoniae and the predominance of a few clones responsible for the dissemination of OXA-48 and OXA-204 enzymes in a Tunisian hospital.


Assuntos
Antibacterianos/farmacologia , Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/classificação , beta-Lactamases/genética , Proteínas de Bactérias/genética , Sangue/microbiologia , Eletroforese em Gel de Campo Pulsado , Hospitais , Humanos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Plasmídeos/genética , Tunísia , Urina/microbiologia
13.
Microb Drug Resist ; 24(8): 1242-1248, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29757079

RESUMO

Bovine mastitis is a major disease in dairy cattle that causes high economic losses annually. Staphylococci, streptococci, and coliforms are among the major pathogens responsible for such infections. While data on bovine mastitis are numerous in Europe where the efficacy of farm management was monitored, those are scarce in African countries. In this study, we reported the occurrence of Escherichia coli (118/372, 31.7%) and Klebsiella pneumoniae (77/372, 20.7%), two environmental pathogens known to cause bovine mastitis. Resistance phenotypes were frequently identified for tetracycline (E. coli, 46.6%/K. pneumoniae, 20.8%), sulfonamides-trimethoprim (17.8%/11.7%), gentamicin (19.5%/14.3%), and enrofloxacin (11.0%/6.5%). No carbapenem-resistant isolate was detected. Extended-spectrum beta-lactamases (ESBLs) were detected on selective medium in three E. coli and six K. pneumoniae, all carrying the blaCTX-M-15 gene. The K. pneumoniae belonged to two highly uncommon sequence types (ST471 and ST1083), while E. coli clustered in the ST167/617 clones, which have been widely reported in humans, animals, and the environment. These data point out the necessity to improve farm management in Tunisia to reduce the occurrence of coliform-induced mastitis and to avoid the dissemination in this sector of ESBL-producing E. coli and K. pneumoniae, which are of public health concern.


Assuntos
Farmacorresistência Bacteriana/genética , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/veterinária , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Mastite Bovina/microbiologia , beta-Lactamases/genética , Animais , Bovinos , Feminino , Tunísia
14.
Front Microbiol ; 9: 3055, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619143

RESUMO

Staphylococcus pseudintermedius is a colonizer as well as an important pathogen of dogs where it is responsible for skin, ear and post-operative infections. The emergence of methicillin-resistant S. pseudintermedius (MRSP) in the early 2000s, which were additionally resistant to most veterinary-licensed antibiotics, drew specific attention to these pathogens due to the limitations created in veterinary therapeutic options. Multiple studies showed that the sequence type (ST)71 was the most frequently identified clone in Europe. A few years ago, several publications have suggested a decline of the ST71 clone and the emergence of the ST258 lineage in Northern Europe. In this study, we show that ST71 is also decreasing over time in France and that the non-ST71 population is highly heterogeneous. Globally, the non-ST71 clones are more susceptible to antibiotics, which might be good news for veterinarians. Two other lineages, ST258 and ST496, seem to be successful in France. These isolates, as well as representatives of the ST71 clone, underwent whole-genome sequence. This study shows that the ST71 and ST496 clusters are highly homogenous while the ST258 cluster is more diverse. Each ST possesses a specific pattern of resistance and virulence genes. The reasons for the apparent and simultaneous success of the ST258 and ST496 clones remain unclear. But the emergence of the ST496 clone will require monitoring given its multi-resistant genotype and threat to canine health.

15.
Microb Drug Resist ; 24(7): 896-908, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29227186

RESUMO

The aim of this study was to investigate the prevalence and molecular features of extended-spectrum cephalosporin resistance in Escherichia coli isolates contaminating ground beef at retail in Algeria. Of 371 ground beef samples, 27.5% were found to contain cefotaxime-resistant E. coli isolates distributed into A (24.5%), B1 (60.8%), and D (14.7%) phylogroups. A rate of 88.2% of isolates had a multidrug-resistance phenotype. All strains were producers of CTX-M type extended-spectrum ß-lactamases (ESBLs): CTX-M-1, CTX-M-3, CTX-M-14, CTX-M-15, CTX-M-24, or CTX-M-32. Conjugation assays allowed the transfer of blaCTX-M-1 in association with IncI1 plasmids, blaCTX-M-15 with IncI1 and IncK+B/O plasmids, blaCTX-M-3 with IncK plasmids, and blaCTX-M-14 with IncF1B or IncK plasmids. Sequence analysis of gyrA and parC genes showed mutations in 98.6% of ciprofloxacin-resistant isolates. The patterns "GyrA: S83L+D87N, ParC: S80I" (46.5%) and "ParC: S80I" (42.3%) were predominant. qnrS1, qnrB, and aac(6')-Ib-cr were detected in 18.7% of isolates. The tet genes, tetA, tetB, and tetA+tetB, were present in 95.7% of tetracycline-resistant isolates. The sul genes (sul1, sul2, sul3, sul1+sul2, sul2+sul3, and sul1+sul3) and the dfr gene clusters (dfrA1, dfrA5, dfrA7, dfrA8, dfrA12, dfrA5+dfrA12, dfrA1+dfrA5, dfrA7+dfrA12, dfrA5+dfrA7, and dfrA1+dfrA5+dfrA7) were found in 96.4% and 85.5% of sulfamethoxazole/trimethoprim-resistant isolates, respectively. Classes 1 and 2 integrons were detected in 67.6% and 9.8% of isolates, respectively. This study highlighted the significant presence of resistance genes, in particular those of CTXM ESBLs, in the beef meat, with the risk of their transmission to humans through food chain.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Carne Vermelha/microbiologia , beta-Lactamases/genética , Argélia , Animais , Antibacterianos/farmacologia , Bovinos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/microbiologia , Humanos , Integrons/genética , Plasmídeos/genética
17.
Front Microbiol ; 8: 1847, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033910

RESUMO

Carbapenems are major antibiotics reserved to human medicine. This study aimed to investigate the mechanisms of carbapenem resistance of a selection of Pseudomonas aeruginosa veterinary strains from the French network Resapath. Thirty (5.7%) imipenem and/or meropenem non-susceptible P. aeruginosa of canine (n = 24), feline (n = 5), or bovine (n = 1) origin were identified in a large collection of 527 veterinary strains gathered by the Resapath. These resistant isolates belonged to 25 MultiLocus Sequence Types (MLST), of which 17 (68%) are shared with clinical (human) strains, such as high risk clones ST233 and ST395. Interestingly, none of the veterinary strains produced a carbapenemase, and only six of them (20%) harbored deletions or insertion sequence (IS) disrupting the porin OprD gene. The remaining 24 strains contained mutations or IS in various loci resulting in down-regulation of gene oprD coupled with upregulation of efflux system CzcCBA (n = 3; activation of sensor kinase CzcS ± CopS), MexEF-OprN (n = 4; alteration of oxido reductase MexS), MexXY (n = 8; activation of two-component system ParRS), or MexAB-OprM (n = 12; alteration of regulator MexR, NalC ± NalD). Two efflux pumps were co-produced simultaneously in three mutants. Finally, in 11 out of 12 strains displaying an intact porin OprD, derepression of MexAB-OprM accounted for a decreased susceptibility to meropenem relative to imipenem. Though not treated by carbapenems, animals thus represent a reservoir of multidrug resistant P. aeruginosa strains potentially able to contaminate fragile outpatients.

19.
J Microbiol Methods ; 132: 125-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27894831

RESUMO

We have developed a phenotypic method suited to the systematic screening of resistance to colistin in E. coli, including those with the mcr-1 gene, by the absence of an inhibition zone after an application of a single drop of 8mg/L colistin solution on a previously inoculated Mueller-Hinton agar.


Assuntos
Colistina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia
20.
Front Microbiol ; 8: 2493, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326664

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) has been reported as a worldwide pathogen in humans and animals including companion animals, i.e., cats, dogs, and horses. France lacked a comprehensive nationwide study describing the molecular features of MRSA circulating among companion animals over a large period of time. Here is reported the characterization of 130 non-duplicate clinical MRSA isolates collected from those three animal species from 2010 to 2015 through the French national Resapath network. Characterization of isolates was performed using phenotypic (antimicrobial susceptibility tests) and molecular (DNA arrays, spa-typing) methods. A horse-specific epidemiology was observed in France with the large dissemination of a unique clone, the CC398 clone harboring a Staphylococcal chromosomal cassette mec (SCCmec) type IV and spa-type t011. It was even the unique clone collected in 2015 whereas the clone CC8 USA500 (SCCmec type IV), classically described in horses, was present until 2014. Contrarily, cats and dogs were mainly infected by human-related MRSA isolates, i.e., clones usually reported in human infections, thus mirroring the human epidemiology in hospitals in France. Isolates belonging to the CC398 clone (SCCmec type IV or V) were also identified in 21.4% of dogs' and 26.5% of cats' MRSA isolates. In order to differentiate human-related from CC398 MRSA, tetracycline-resistance [or tet(M) detection] could be useful since this resistance is scarce in human-related strains but constant in CC398 MRSA isolates. In all, our data give a nationwide epidemiological picture of MRSA in companion animals over a 5-year period in France, adding further epidemiological information on the contribution of those animal species to a major public health issue. Considering the wide dissemination of CC398 MRSA isolates and the fact that 11/64 (17.2%) of them presented the Immune Evasion Cluster which enhances CC398 capacities to colonize humans, a specific attention should be paid in the coming years to determine the risk associated to the transmission in people in frequent contacts with companion animals. Our data also show that the prevalence of MRSA has likely decreased in cats, dogs, and horses between 2012 and 2015 in France. This trend should be monitored in the years to come.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA